点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
优化概率模型是统计中良好的领域。然而,它与生成模型的培训的联系在很大程度上仍然不足。在本文中,我们表明可以将时间变化的生成模型的演变投射到指数族的歧管上,自然会在生成模型的参数与概率模型的参数之间建立链接。然后,我们根据自然梯度下降方案将其投影在流形上移动。这种方法还使我们能够有效地近似KL差异的自然梯度,而无需依靠MCMC进行棘手的模型。此外,我们提出了该算法的粒子版本,该版本具有指数家族中任何参数模型的封闭形式更新规则。通过玩具和现实世界实验,我们验证了所提出的算法的有效性。
主要关键词